
Post-Quantum Cryptography: State of the Art

Johannes A. Buchmann, Denis Butin, Florian Göpfert, Albrecht Petzoldt

Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstraße 10, 64289 Darmstadt, Germany

Abstract. Public-key cryptography is indispensable for cyber security.
However, as a result of Peter Shor shows, the public-key schemes that
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1 Introduction

Since its invention in the late 1970s, public-key cryptography has become a major
enabler of cyber security. For example, the security of the TLS protocol that
protects billions of Internet connections daily relies on public-key encryption and
digital signatures. Today, mostly the RSA schemes are used. In addition, schemes
based on elliptic curves are becoming more and more popular. For example,
elliptic-curve based digital signatures are used in the German electronic ID card
and in the German electronic passport. The security of these schemes relies on the
hardness of the integer factorization problem and the discrete logarithm problem.
In the integer factorization problem, the prime factors of a given positive integer
have to be found. The discrete logarithm problem refers to finding the exponent
x when two elements g and h of a finite group G are given where h = gx. In
elliptic curve schemes, this group is the group of points of an elliptic curve over
a finite field.

In 1994, Peter Shor [68] discovered polynomial time quantum computer
algorithms that solve the integer factorization problem and the discrete logarithm
problem in the groups relevant for public-key cryptography. Therefore, all public-
key cryptosystems that are currently used in practice will become insecure once
sufficiently large quantum computers can be built. As can be seen from [73],
there is considerable technological progress in designing quantum computers. As
public-key cryptography is indispensable for cyber security, alternative public-
key schemes that resist quantum computer attacks have to be developed. Such
schemes are referred to as post-quantum schemes. This paper gives an overview
of the current state of the art regarding post-quantum public-key cryptography.

The paper starts with a short introduction into public-key cryptography in
Section 2. This section focuses on explaining the RSA public-key encryption
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and signature schemes as they are currently very much used in practice. In
particular, this section shows how RSA relies on the integer factorization problem.
Section 3 describes the relevance of public-key cryptography for securing IT
applications in more detail. As a consequence, it becomes clear that today’s cyber
security relies on the hardness of integer factorization and computing discrete
logarithms. Section 4 discusses the current knowledge regarding the hardness
of integer factorization and its development, both for attackers with access to
quantum computers, and ones without. This section also briefly discusses the
hardness of computing discrete logarithms. It becomes clear that there is a need
for the development of alternative public-key cryptosystems that resist quantum
computer attacks. Once the need for post-quantum public-key cryptography is
established, the question arises what it means for a public-key scheme to be
secure in a post-quantum world. This question is answered in Section 5. Section
6 gives an overview of the algorithmic problems on which the security of current
post-quantum proposals is based. Section 7 describes such schemes. In Section
8 the different proposals for post-quantum schemes are compared and open
problems are presented.

2 Public-key cryptography

In 1976, Witfield Diffie and Martin Helman published their seminal paper “New
Directions in Cryptography” [18]. In this paper they write “Widening applications
of teleprocessing have given rise to a need for new types of cryptographic systems
which minimize the need for secure key distribution channels and supply the
equivalent of a written signature.” This was the start of public-key cryptography,
at least of its discussion in public. Before, in 1970, the concept of “non-secret
encryption” had already been developed at the Government Communications
Headquarters (GCHQ) in Great Britain by James Henry Ellis. In their paper,
Diffie and Helman presented a way of exchanging keys over an insecure channel
and stated: “We propose some techniques for developing public-key cryptosystems,
but the problem is still largely open.” A satisfactory solution was given by Rivest,
Shamir, and Adleman in their work “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems” [64] where they propose the RSA public-key
encryption and signature scheme. They received the Turing Award 2002 “for their
ingenious contribution to making public-key cryptography useful in practice”.

The idea of Rivest, Shamir, and Adleman is as follows. Suppose that we are
given a finite group G. We assume that this group is multiplicatively written. We
also assume that elements in the group can be selected (randomly), multiplied,
and tested for equality without the knowledge of the group order |G|.

RSA relies on the fact that anyone can efficiently raise elements to eth powers
in G where e is a positive integer that is coprime to |G| without knowing |G|
but that extracting eth roots in G requires the knowledge of |G|. In fact, our
assumptions regarding G imply that given a group element g anyone can compute
h = ge using fast exponentiation (see [12]). However, the only generic method to
extract the eth root g of h requires the knowledge of |G|. A positive integer d is



Post-Quantum Cryptography 3

calculated with
de ≡ 1 mod |G|. (1)

Then
hd = gde = g1+k|G| = g · (gk)|G| = g (2)

since group elements raised to the |G|th power yield 1 by Lagrange’s theorem
(see [12]).

In the situation described in the previous paragraph, public-key cryptography
can be realized. For key generation, the group G and the exponent e are selected
and the exponent d is calculated by solving the congruence (1) using the secret
group order |G|. This can be done by means of the extended Euclidean algorithm
(see [12]).

For public-key encryption, the plaintexts are the group elements. Encrypting
a plaintext g ∈ G means raising it to the eth power. So the ciphertext is h = ge.
This ciphertext can be decrypted by extracting the eth root as explained in [12]:
g = hd.

The corresponding digital signature scheme uses a cryptographic hash function
H : {0, 1}∗ → G. The signature of a document x ∈ {0, 1}∗ is s = H(x)d. This
signature is the eth root of H(x). So verification requires checking whether
se = H(x) which can be done using the public key only.

The question remains which finite group has the desired property of allowing
computations while the group order is unknown. In their RSA system Rivest,
Shamir, and Adleman use the multiplicative group G = (Z/nZ)∗ of integers
modulo a composite integer n = pq where p and q are large prime numbers.
Anyone who knows the modulus n can compute in G. However, determining its
order |G| = (p− 1)(q − 1) requires factoring n which means finding the prime
factors p and q. Hence, the security basis of the RSA system is the intractability
of the integer factorization problem for sufficiently large prime factors p and q.

Subsequently, ElGamal [25] proposed cryptosystems whose security is based
on the problem of computing discrete logarithms in certain finite groups. This
problem refers to finding the exponent x when two elements g and h = gx of
a finite group are given. ElGamal used the multiplicative group of finite fields.
Later, Koblitz and Miller [34,52] suggested using the group of points of an elliptic
curve over a finite field.

3 The relevance of public-key cryptography

There can be no doubt that public-key cryptography is one of the most important
foundations of modern cyber security.

The Transport Layer Security (TLS) protocol requires digital signatures and
also, in most cases, public-key encryption. This protocol protects the confidential-
ity and integrity of billions of Internet connections daily, for example in e-banking
and e-commerce applications, and email traffic.

Digital signatures establish the authenticity of software downloads which are
used all over the Internet. Examples are operating system updates, application
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software updates, in particular downloads of apps for smartphones, and malware
detection software. They prevent the distribution of malicious code such as

Shell.Exec("rmdir /Q /S C:\Windows\System32")

instead of the genuine software. Note that the above fake software would destroy
the operating system and imagine the impact of such a fake update’s distribution
to all users of an operating system. As the example of malware detection software
shows, the possibility of software updates is crucial for Internet security as new
malware is produced on a regular basis. But in turn, such updates are only useful
if their authenticity can be verified.

Digital signatures protect the authenticity of electronic ID cards and passports.
For example, the data on the RFID chip of the German electronic passport are
digitally signed. These data include the data that are printed on the passport,
the image of the passport holder, and his or her fingerprints.

In the future, the importance of public-key cryptography will continue to grow,
for example in the context of secure car-to-car and air traffic communication.

4 The hardness of factoring and computing discrete
logarithms

As explained in Section 2, the security of current public-key cryptography relies
on the hardness of the integer factorization and the discrete logarithm problems in
certain groups. In fact, with a few exceptions that use elliptic curve cryptography,
most applications use the RSA schemes. This means that current cyber security
relies on the hardness of factoring positive integers n which are the product of
two large primes. Today, the RSA moduli are at least of length 1024 bits. In
many cases, applications have switched to 2048 or even 4096 bit moduli. So the
question arises whether factoring such integers is intractable and remains hard
in the future.

Examining the factorization history of Fermat numbers yields a first assess-
ment of the hardness of the integer factoring problem. These numbers were
studied by Pierre de Fermat in the seventeenth century. For a positive integer
n, the nth Fermat number is defined to be Fn = 22n + 1. So we have F0 = 3,
F1 = 5, F2 = 17, F3 = 257, f4 = 65537. These numbers are all prime numbers.
However, F5 = 4294967297 is not. It is divisible by 641 as was discovered in 1732
by Euler. Subsequently, more Fermat numbers were factored as Table 1 shows.

Table 1 shows that the Fermat numbers double in length when the index
is incremented by 1. It is interesting to see that the seventh Fermat number
was only factored in 1970 by Brillhart and Morrison [54]. A computer program
and an advanced algorithm were necessary to achieve this. Also, Table 1 shows
that there is significant progress in factoring. This progress is due to advances in
factoring algorithms and computer technology.

We briefly review algorithmic progress for the integer factoring problem. For
a positive integer n and two positive real numbers u, v, with 0 ≤ u ≤ v we set

Ln[u, v] = ev(log n)u log log n1−u

. (3)
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n Fn = 22n

+ 1
0 3 prime
1 5 prime
2 17 prime
3 257 prime
4 65,537 prime
5 4,294,967,297 = 641 · 6, 700, 417
6 18,446,744,073,709,551,617 = 59, 649, 589, 127, 497, 217 · 5, 704, 689, 200, 685, 129, 054, 721
7 2128 + 1 (39 digits) = p (17 digits) · q (22 digits)
8 2256 + 1 (78 digits) = p( 16 digits) · q (62 digits)
9 2512 + 1 (155 digits) = p( 49 digits) · q (99 digits)
10 21024 + 1 (309 digits) = 45, 592, 577 · 6, 487, 031, 809 · p( 40 digits) · q (252 digits)
11 22048 + 1 (617 digits) = 319, 489 · 974, 849 · p( 21 digits) · q (22 digits) · r (564 digits)

Table 1. Factorization of Fermat Numbers (until 2014)

This function is used to quantify the running time of factoring algorithms. We
note that

Ln[0, v] = (logn)v. (4)

So factoring algorithms with running time Ln[0, v] run in polynomial time. Also,
we have

Ln[1, v] = (elog n)v. (5)

This shows that factoring algorithms with running time Ln[1, v] run in exponential
time. In other words, the function Ln[u, v] can be viewed as a linear interpolation
of linear and exponential running time.

Running times Ln[u, v] with 0 < u < 1 are called subexponential. The
quadratic sieve, which was invented in 1981 by Carl Pomerance [62], has subex-
ponential running time Ln[1/2, 1 + o(1)] where o(1) stands for a function that
converges to 0 as n goes to infinity. In fact, all advanced algorithms discovered
until the late eighties are of complexity Ln[1/2, v] for some v, that is, they are
“in the middle” between polynomial and exponential.

In 1990 John Pollard invented the number field sieve [39] which was later shown
by Buhler, Lenstra, and Pomerance [15] to be of complexity Ln[1/3, 3

√
64/9].

This was a big step forward. The number field sieve is still the fastest known
factoring algorithm.

This development shows that factoring sufficiently large RSA moduli is still
intractable but that unexpected breakthroughs are always possible. Currently,
the largest RSA modulus that has been factored has 768 bits. It required the
equivalent of almost 2000 years of computing on a single core 2.2 GHz AMD
Opteron processor.

The situation for discrete logarithms in multiplicative groups of finite fields is
similar to the factoring situation. Subexponential algorithms have been discovered
for such groups [32]. However, in the group of points of elliptic curves over finite
fields, only exponential discrete logarithm algorithms are known. This is why the
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key sizes in these cryptosystems are considerably smaller than RSA keys and
applications start using elliptic curve cryptography.

The above only refers to algorithms for “conventional computers”. In the
early 1980s, Yuri Manin and Richard Feynman [23] came up with the concept of
quantum computers. Such computers use the quantum mechanical phenomena of
superposition and entanglement to speed up computations. In 1994 Peter Shor
[68] presented polynomial-time algorithms for factoring integers and computing
discrete logarithms. This means that the public-key schemes from Section 2
will be insecure once sufficiently powerful quantum computers are available.
There is considerable technological progress in quantum computing [66]. So the
development of large quantum computers in the near future cannnot be excluded.

5 Post-quantum security

As explained in Section 3, public-key cryptography is indispensable for the security
of present and future computing infrastructures. Also, as shown in Section 4, the
security of the public-key cryptography schemes that are currently being used
in practice is threatened by quantum computers. Therefore, it is necessary to
come up with alternative schemes that resist quantum computer attacks. They
are called post-quantum schemes. Such schemes are post-quantum secure. In this
section we discuss what is meant by this.

To define security of a cryptographic scheme the following is required. Firstly,
there must be a protection goal that the cryptographic scheme is supposed to
achieve. For example, encryption schemes protect confidentiality and digital
signature schemes provide integrity, authenticity, and non-repudiation (for details
see [48]). Secondly, there must be an adversary model that describes the goals of
a potential adversary and the capabilities and resources that the adversary can
use. For example, in the ciphertext-only security model for encryption schemes,
the adversary searches for plaintexts that correspond to given ciphertexts and
can only see ciphertexts. In the chosen cipertext model, the adversary can encrypt
plaintexts of her choice. Thirdly, the time period for which a cryptographic
scheme is supposed to achieve its security goals must be known. For example,
one-time passwords only need to be kept confidential until they have been used
while conventional passwords must be protected until they expire. Post-quantum
security refers to the resources of a potential adversary: he has access to a
quantum computer.

We describe how the security of a cryptographic scheme S is established. An
algorithmic problem P is selected whose hardness guarantees the security of S. No
polynomial time algorithm for solving P must be known as in this case P would
be considered easy to solve. In the case of RSA, P is the integer factoring problem.
Once quantum computers reach maturity, integer factoring can no longer be used
as the security basis of cryptographic schemes since polynomial-time algorithms
for integer factorization will be available.

If P cannot be solved in polynomial time, an instance of S is selected that
achieves the desired security level. Such an instance is determined by choosing
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the necessary parameters and keys. For example, the RSA encryption scheme is
instantiated by choosing the RSA modulus and the RSA encryption exponent.
Likewise, the underlying algorithmic problem can be instantiated. In the case
of the integer factorization problem, an instance is determined by the number
to be factored. Each instance IS of S is associated with an instance IP of P
whose intractability guarantees the security of IS in the chosen security model. In
order for IS to be secure for a sufficiently long time period, the instance IP must
remain intractable during this time period. So there are two tasks in this context.
Firstly, connecting IS to some IP and secondly, determining the hardness of the
instances of P . The first task is either addressed using a mathematical reduction
proof or, if this is not possible, by applying heuristical arguments. In the case of
RSA and the relevant security models, no reduction proof is known. The second
task is to analyze the hardness of P . Such an analysis provides a lower bound for
the computational resources required to solve a given instance of P . There are
different models for measuring the resources. An example is dollar days, where x
dollar days refers to the computational power that can be bought for x dollars
being available for one day. For details see [38].

As the necessary technical details about quantum computers are still unknown,
such a more detailed analysis of post-quantum security is not yet possible. This
is why post-quantum security currently refers to a cryptographic scheme being
associated in the above sense to a computational problem that is not solvable
in polynomial time on a quantum computer. This includes the impossibility of
solving this problem on a conventional computer.

6 Post-quantum problems

Trying to find algorithmic problems that provably resist quantum computer
attacks seems hopeless. There is not even such a problem that resists classical
attacks. Therefore, the only possible strategy is to identify algorithmic problems
for which the resistance to quantum computer attacks is plausible. Such a
plausibility is currently based on two arguments. The first argument is that
attempts of the scientific community to find polynomial time quantum algorithms
for these problems have failed since a long time. The second argument is the
belief that NP-hard problems resist quantum attacks. Such a belief is suggested
by certain complexity theoretic arguments (see [5]). This suggests constructing
post-quantum schemes based on NP-hard problems. However, there is a problem
with this approach. The security of the currently discussed candidates for post-
quantum schemes is based on subproblems of NP-hard problems which themselves
are not proven to be NP-hard. So it appears that the first argument must be
used. The second argument may enhance the plausibility.

We now review the algorithmic hardness assumptions that are currently being
used as the security basis of post-quantum public-key cryptography.
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6.1 Cryptographic hash functions
The first security assumption is the existence of a secure cryptographic hash
function. This is a function that maps bit strings of arbitrary length to bit strings
of a fixed hash length n and satisfies certain security and efficiency requirements.
An important efficiency requirement is that software implementations of the
hash functions are able to hash long strings very efficiently. Another efficiency
requirement is that the hash function lends itself to high performance hardware
implementations. The most basic security requirement is collision resistance,
which means that finding two strings with the same hash is intractable. Collision
resistance implies other weaker security requirements such as one-wayness, second-
preimage resistance, and target collision resistance which are explained in [65].
In fact, for a complexity-theoretic reduction proof as mentioned in Section 5,
an individual secure and efficient hash function is insufficient. Instead, a family
of hash functions is required whose elements are parametrized by a security
parameter.

There is currently no cryptographic hash function or hash function family that
is efficient and provably secure. Because of the efficiency requirement, the practical
hash functions use construction principals that may be exploited by attackers.
This has happened in the past for the cryptographic hash function MD5 [72].
Therefore, cryptographic hash functions are used that appear to be secure after
a thorough analysis of the scientific community. This analysis takes into account
attackers that can use algorithms and computing resources available today or in
the foreseeable future, including quantum attackers. Currently, there are several
such hash functions, for example SHA-3 [8] and RIPEMD [21]. Generalizing these
constructions, secure hash function families are obtained.

Although the impact of quantum computers cannot yet be estimated, a lower
bound on an important parameter of hash functions can be given for the pre-
quantum and post-quantum world: the hash length. Let h be a cryptographic
hash function with hash length n. Suppose that collision resistance is desired
of h. The generic birthday attack (see [12]), which works for any hash function,
finds a collision in time approximately 2n/2. Hence, if n is chosen too small, then
h is not collision resistant. Today, n ≥ 256 is required to prevent such an attack.
In the quantum world, there is a generic attack [11] that finds a collision in time
approximately 2n/3. Therefore, n ≥ 384 is required for collision resistance.

If only second-preimage resistance is required of h, then the birthday attack
and its quantum generalizations do not work. On classical computers, second
preimages can only be found by exhaustive search in time approximately 2n.
Therefore, in the world of classical computers, the hash length must be at least
128. In the quantum world, Grover’s algorithm [28] can be used to find a second
preimage in time approximately 2n/2. This leads to a lower bound of 256 for n.

6.2 Short vectors in lattices
An important class of computational problems that serve as the basis of post-
quantum algorithms are lattice-problems. We define lattices and present some im-
portant lattice problems. Let n, k be positive integers and let k ≤ n. Let b1, . . . , bk
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be linearly independent vectors in real n-space Rn. Write B = (b1, . . . , bk) for
the matrix with column vectors bi, 1 ≤ i ≤ k. Then the lattice L(B) is the set
{
∑k

i=1 xibi : xi ∈ Z, 1 ≤ i ≤ k} of all integer linear combinations of the vectors
bi. The lattices in real n-space are exactly the L(B) for some B as above. The
sequence (b1, . . . , bk) is called a basis of L(B). For k > 2, there are infinitely
many bases of L(B) which are all of length k. The set of all bases of L(B) is
{BT : T ∈ GL(k,Z)} where GL(k,Z) denotes the set of all k by k matrices of
determinant ±1 with integer entries. As all bases of L(B) have the same length
k, this number is called the dimension of L(B).

The first lattice problem that is used in cryptography is the shortest vector
problem SVP. In this problem, n, k, and a basis B of a lattice L in Rn of dimension
k are given. The task is to find a shortest non-zero lattice vector, typically in the
Euclidean norm. This problem is known to be NP-hard under random reduction
[1].

A related problem is the closest vector problem CVP. In addition to the input of
SVP, a target vector t ∈ Rn is given. The goal is to find a lattice vector v ∈ L such
that the distance between v and t is minimal, that is ||v − t|| = minw∈L ||w − t||.
This problem is NP-hard [51]. In fact, in cryptography, approximate versions of
these problems are used. To state these problems a function α is required that
maps positive integers to real numbers ≥ 1. Then αSVP searches for a non-zero
lattice vector v whose length is at most α(k)λ(L) where λ(L) is the length of a
shortest non-zero vector in L. Likewise, αCVP tries to find a vector v ∈ L such
that ||v − t|| ≤ α(k) minw∈L ||w − t||. Such relaxed problems are also known to
be NP-hard under random reduction for certain choices of α. However, for the α
used in cryptography such statements are not known.

Another important lattice problem is lattice basis reduction. Given n, k and B
the goal is to find a basis B′ of L(B) with short basis vectors. There are several
notions of reduction. For example, LLL-reduction [37] is polynomial time while
Korkine-Zolotaref-reduction is NP-hard. The importance of lattice basis reduction
comes from the fact that the most efficient algorithms for solving αSVP and
αCVP use lattice basis reduction as a subroutine. Also, the hardness of αSVP
and αCVP depend on the input basis being reduced or not.

6.3 Decoding over finite fields

Another class of hard algorithmic problems that is used as a basis of post-quantum
public-key cryptography comes from coding theory. Let k ≤ n be positive integers
and let F be a finite field. The Hamming weight w(u) of a vector u ∈ Fn is the
number of nonzero components of u. The Hamming distance between two vectors
u and v in Fn is w(u− v). An [n, k] linear code C is a k-dimensional subspace of
Fn. Such a code C can be defined as C = {uG : u ∈ Fk} with a generator matrix
G ∈ Fk×n. The set of all generator matrices of C is {TG : T ∈ GL(k,F)}. The
general decoding problem (GDP) is defined as follows.

Problem GDP: Given integers t, n, k with t � k < n, a generator matrix
G of C, and a target vector v ∈ Fn, find a code word c ∈ C such that w(c−v) ≤ t.
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Typically, t is chosen less than half the minimum distance of code words in
C. Then c is uniquely determined by v. Solving the decoding problem is also
referred to as correcting the errors in v. Error correction plays an important role
in electronic communication and storage. The general decoding problem is known
to be NP-complete (see [26]).

There are linear codes having generator matrices that enable efficient decoding.
Examples for such code are binary Goppa codes. They are linear codes over the
field F of 2m elements where m is a positive integer. A binary Goppa code is
defined by a Goppa polynomial g which is a polynomial with coefficients in F.
Denote its degree by t. If g is irreducible over F, then the minimum distance of
two code words is 2t+ 1. Using such a Goppa polynomial, the decoding problem
for Goppa codes can be solved in polynomial time for errors of weight at most t.
Goppa codes with irreducible Goppa polynomial are called irreducible.

Again, code-based cryptosystems do not rely on the decoding problem in
its full generality. Instead, they use codes such as Goppa codes [6] for which a
representation exists that allows for efficient decoding.

6.4 Solving multivariate quadratic equations over finite fields

The last type of problems that support the security of post-quantum public-key
cryptography comes from algebraic geometry. Let F be a finite field. The problem
of solving systems of quadratic equations over F is defined as follows.

Problem MQ: Given positive integers m and n and m quadratic polynomials
p1, . . . , pm in the n variables x1, . . . xn with coefficients in F, find field elements
X1, . . . , Xn such that pj(X1, . . . , Xn) = 0 ∀j ∈ {1, . . . ,m}.

The problem MQ is proven to be NP-complete (for m ≈ n) [26]. However,
most multivariate schemes use only subclasses of MQ.

7 Post-quantum public-key schemes

7.1 Hash-based signatures

In the late 1970s, not only RSA but also the Merkle signature scheme (MSS) [49,50]
was invented. In contrast to the RSA or ElGamal schemes, it only relies on the
security of its underlying cryptographic hash function. RSA and ElGamal also
use such hash functions. But as explained in Section 4, their security also relies
on the hardness of number-theoretic problems. The idea of MSS is as follows.
MSS generates many pairs consisting of a signature key and the corresponding
verification key for the Lamport-Diffie one-time signature scheme [35]. Since
one-time signatures partially reveal the signing key, each one-time key can only
be used once. MSS uses a complete binary hash tree to reduce the validity of 2H

one-time verification keys (with H being the tree’s height) to one MSS public
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key. The leaves of this tree are the hashes of the one-time verification keys. Any
inner node is the hash of the concatenation of its two children. The root of the
tree is the MSS public key. When a signature is generated, the signer selects a
secret signing key that has not been used yet and creates the one-time signature.
The MSS signature consists of the one-time signature, the verification key, and
the authentication path for the corresponding one-time verification key. The
authentication path contains the siblings of the nodes in the path from the leaf
corresponding to the verification key in the signature to the root of the hash tree.
The verifier proceeds as follows. She verifies the one-time signature using the
verification key, both contained in the signature. She then uses the authentication
path to construct the root of the hash tree from the hash of the verification key.
This root is compared with the MSS public key. The signature is validated by
verifying the one-time signature.

When MSS was first proposed, the scheme was much less efficient than RSA
and ElGamal. Meanwhile, several research projects have improved the situation
both in regard to security and efficiency. Currently, the most advanced hash-based
signature scheme is XMSS [14]. It uses multiple Merkle trees, as well as a pseudo-
random number generator yielding reduced signing key storage requirements.
XMSS only requires a target collision-resistant hash function to be secure. Any
such hash function yields a new instance of XMSS. More generally, it is shown
in [14] that there is a secure instance of XMSS as long as there is any secure
signature algorithm. This means that XMSS has minimal security requirements.
It also forward secure, i.e. signatures generated before a key compromise remain
valid. Instead of Lamport-Diffie one-time signatures, it uses a variant of the more
efficient Winternitz scheme [13]. Furthermore, XMSS is very efficient in practice
as its implementation on different platforms shows. For details see [14].

The fact that an IETF Internet-draft for hash-based signatures [46] exists
demonstrates their readiness for practical application. For their practical use,
a major challenge is to deal with the most important difference between hash-
based and other signature schemes: statefulness. This refers to the fact that
hash-based signatures rely on many one-time key pairs, making it necessary to
keep track of key usage. At any time the signing device must know the state of
the scheme: which of the one-time signature keys have been used and which have
not. If several signing devices are used, it is necessary to synchronize them on a
regular basis or to partition the set of signing keys into disjoint subsets: one per
device. Key storage demands special care in the case of statefulness, since new
attack vectors may surface. Another challenge is the issue of optimal parameter
selection, which is not obvious. This problem has been partially addressed in a
recent generalization of XMSS [31].

7.2 Code-based public-key cryptography

In this section we show how to construct public-key encryption and digital
signature schemes based on coding theory. The public-key encryption schemes
are very efficient except for the large key sizes. The digital signature schemes
still require more research.
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An important example of a code-based public-key encryption scheme is the
McEliece scheme [45] invented in 1978. This scheme is still considered to be
secure, even in a quantum world.

To generate a key pair for this scheme, one selects a generator matrix G
for a binary [n, k] code C such that G can be used to efficiently correct t errors
for some t much less than the minimum distance of C. Also, a non-singular
matrix S ∈ Fk×k and a permutation matrix P ∈ Fn×n are selected randomly
with the uniform distribution. They are used to hide the special generator ma-
trix G by computing the generator matrix G′ = SGP of the permuted code C′.
Then, the public key of the scheme is (G′, t). The secret key consists of S, G and P .

To encrypt a message m ∈ Fk, one chooses randomly a vector z ∈ Fn of weight t.
The ciphertext of the message m is c = mG′ + z ∈ Fn.

To decrypt the cipertext c, one proceeds as follows. First, we observe that

x = cP−1 = (mG′ + z)P−1 = mSG+ zP−1. (6)

Since P is a permutation matrix and the weight of z is t, the weight of zP−1 is
also t. Furthermore, mSG is a codeword in C since G is a generator matrix of C.
This shows that the distance of x from C is t. Hence, by our assumption, x can
be decoded, the result being the codeword

y = mSG. (7)

Next, m can be calculated by solving the linear system (7). The original McEliece
scheme uses binary Goppa codes.

Encryption and decryption in the McEliece scheme can be performed very
efficiently [9]. However, the keys are quite large. There are variants of McEliece
which deal with the problem of large key sizes, for example the scheme of Sendrier
et al. [53] which allows fast hardware implementations [29].

For the McEliece scheme to be applicable in practice, a semantically secure
conversion is needed. The idea of Persichetti [56] is going into the right direction.

Code-based signatures still require more research. There is the scheme of
Courtois, Finiasz, and Sendrier [36]. In this scheme signing is quite slow and
public key sizes are very large. Also, no security reductions are known. There
are also signature schemes that follow the Fiat-Shamir paradigm (see [12]) and
are based on the Stern identification protocol [70], such as [47,2]. This scheme
has security proofs which reduce hard coding problems to the security of the
schemes. Still, there are several efficiency issues with these schemes, for example
the signature length.

7.3 Lattice-based public-key cryptography

Lattice-based cryptography is similar to code-based cryptography. The similarity
comes from the fact that the knowledge of an in some sense reduced lattice basis
allows computing closest vectors while this problem becomes intractable when an
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unstructured basis is given. This suggests making the reduced basis of a lattice
L ⊂ Rn for some n the secret key and some other unstructured basis the public
key. Encryption would mean to select a lattice vector v as plaintext and to hide
it by adding some small error vector e: c = v + e. Decryption would be done by
solving the closest vector problem with input c. The closest vector is the plaintext
v. Likewise, a message d would be signed using a hash function h : {0, 1}∗ → Rn.
The signature of a message d would be the closest vector s to h(d). Verification
would be performed by checking that s is a lattice vector that is close to h(d).

Unfortunately, this straightforward approach does not yield secure schemes.
It requires substantial modifications. Recent examples of lattice based public-key
encryption schemes are [40,69] and of lattice-based signature schemes are [22,3].
As a result, schemes are obtained that do not directly rely on the hardness of
lattice problems. Instead, they rely on the learning with errors problem (LWE)
[63] and the shortest integer solution problem (SIS) [1]. In turn, the hardness of
these problems is based on the hardness of lattice problems.

Lattice-based public-key cryptography is very promising. On the one hand,
the schemes appear to be very efficiently implementable. If schemes are selected
that rely on hard problems in ideal lattices [42,43] then the required storage space
and computing time is very limited, at least asymptotically. On the other hand,
many lattice-based schemes have very strong security properties: they allow a
worst-to-average case security reduction. This means that an instance of the
scheme under consideration is secure as long as the worst case of a large class of
lattice problems is intractable. Why is this important? For other schemes such
as RSA, code-based, hash-based, and multivariate schemes it can only be shown
that an instance of a scheme is secure as long as a related computational problem
is hard. So in order to guarantee security it is necessary to select the instance of
the scheme in such a way that the corresponding instance of the computational
problem is hard to solve. For RSA, it is known how to select hard instances: the
RSA modulus is constructed as the product of two big random prime numbers.
However, for the other types of schemes, it is not so clear how to construct hard
instances of the underlying problem. Worst-to-average circumvents the necessity
to generate hard instances.

However, when worst-to-average case reduction is used, the lattice-based
schemes loose their efficiency. In order to make them more efficient, reductions to
random instances of the LWE or SIS problem can be used. This results in very
efficient schemes [22]. Another alternative is the NTRU public-key encryption
scheme [30] which has no security proof whatsoever but very good performance.

In addition to the advantages explained in the previous sections, lattice-based
cryptography allows for the implementation of many advanced schemes, most
notably fully homomorphic encryption [27]. This is not known for the other
classes of public-key schemes mentioned in this paper.
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7.4 Multivariate public-key cryptography

In this section we explain how public-key schemes based on the hardness of solving
systems of nonlinear multivariate equation over finite fields work in principle.

Let F be a finite field and m,n be two positive integers. One chooses a
central map, which is a quadratic map Q : Fn → Fm, x = (x1, . . . , xn) 7→
(q1(x), . . . , qm(x)). The map Q must be easily invertible in the sense that it is
easy to find a preimage for every image x under Q. To hide the structure of
this central map in the public key one composes it with two affine linear maps
S : Fn → Fn and T : Fm → Fm. The result is the quadratic map P = T ◦ Q ◦ S
which is the public key of the corresponding public-key schemes. P is supposed to
look like a random system and therefore is assumed to be difficult to invert. The
secret key of the scheme consists of Q,S and T and therefore allows to invert
the public key.

To sign a document d one uses a hash function H : {0, 1}∗ → Fm to com-
pute a hash value h = H(d) of the message. To compute a signature of the
document d, the signer computes recursively x = T −1(h), y = Q−1(x) and
z = S−1(y). The signature of the document d is z ∈ Fn. Here, Q−1(y) means
finding a preimage of y under the central map Q.
To verify the authenticity of a signature z ∈ Fn, the receiver of a message checks
if P(z) = H(d).

There exists a large variety of practical multivariate signature schemes. The
best known of these are UOV [33], Rainbow [19], and pFlash [20]. Additionally,
there exist multivariate signature schemes from the HFEv- family, which produce
very short signatures (e.g. 120 bit). The most promising scheme in this direction is
Gui [61]. Signing and verifying with all of these schemes is very fast, presumably
much faster than RSA and ECC [16,10].
In the last years, there have been several attempts to decrease the key size of
multivariate signature schemes [58,59]. However, despite of this work, the key
sizes of multivariate signature schemes are still much larger than those of classical
schemes such as RSA.

To construct a public-key encryption scheme on the upper principle the
central map Q must be injective. In particular, we therefore need m ≥ n. To
encrypt a plaintext x = (x1, . . . , xn) ∈ Fn, one simply computes c = P(x) ∈ Fm.
Since the owner of the secret key can invert the central map Q and knows the
two affine linear maps S and T , she can determine the plaintext by computing
x = S−1 ◦ Q−1 ◦ T −1(c).

The currently most promising multivariate encryption scheme is the Sim-
pleMatrix (or ABC) encryption scheme [71], which allows very fast en- and
decryption. However, decryption failures occur with non-negligible probability.
Furthermore, the key sizes of this scheme are quite large.
A major problem of all multivariate public-key schemes is their security, which is
somewhat unclear. Many of the proposed multivariate schemes have been broken
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in the past (e.g. MI [44] and Oil and Vinegar [55]). The above mentioned schemes
are all quite young (some less than 10 years), which means that they have not
yet been subject to extensive cryptanalysis. Furthermore, there exist no security
proofs for multivariate public-key schemes.

However, similarly to the case of code-based cryptography, there exists a provable
secure multivariate identification scheme [67]. Via the Fiat-Shamir transform [24]
it is possible to extend this scheme to provable secure (yet inefficient) multivariate
(ring) signature schemes [60].

8 Conclusion

In this section we evaluate and compare the proposals for post-quantum public-key
cryptography that are described in this paper.

Firstly, we compare the required hardness assumptions. From a structural
point of view, the general decoding problem, the lattices problems, and the
problem of solving multivariate systems of quadratic equations over finite fields
are similar. These problems are NP-hard. However, the computational problems
that support the security of the post-quantum schemes are in subclasses that are
not known to be NP-hard. As for the integer factorization problem, it may happen
that algorithms are discovered that solve the relevant problems in polynomial time.
In this case the corresponding cryptographic systems can no longer be considered
to be secure. Therefore, thorough research is required to establish the hardness
of these problems. In fact, in order to enable the selection of secure parameters
for required security levels, such research must determine quantitatively the
resources necessary to solve a given instance of the computational problems.

In code-based security, solving the general decoding problem for Goppa codes
can be considered to be hard. Detailed studies investigate this hardness in details
(see [7,57]). In contrast, structured codes such as quasi-linear codes must be
studied in more detail. Lattice-based cryptography uses a multitude of different
computational hardness assumptions such as LWE, ring LWE, SIS, ring SIS,
αSVP, etc. Therefore, more research is required to establish the hardness of the
most relevant of these problems in detail even though there is much research
on the general lattice problems such as SVP (e.g. [17,41,4]). In multivariate
cryptography, new research is required whenever a new central map is introduced
or a sub-problem that allows for smaller keys.

The problem of coming up with a secure hash function appears to be quite
different from the problems discussed in the previous section. Firstly, the only
relevant security parameter is the hash length while the other problems have
many more parameters. Secondly, experience shows that it is not hard to come
up with a secure alternative if a cryptographic hash function is broken. Typically,
an easy way of enhancing the security of a given hash function is to increase
the number of rounds in the insecure hash function at the expense of reducing
its efficiency. But also new constructions are possible. Thirdly, assuming that
there is a secure hash function is much more basic than the problems from the
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previous section. For example, all signature schemes require such hash functions
if long documents are to be signed.

Next, we compare the post quantum schemes that have been presented in this
paper. The most advanced scheme is the hash-based signature scheme XMSS [14].
Furthermore, it provides the strongest security guarantees as it can be shown
that there is a secure instance of XMSS as long as there is any secure signature
scheme. This is due to the flexibility of XMSS: any secure cryptographic hash
function can be used to construct a secure instance of XMSS. These properties
support the quantum-resistance of XMSS. If a cryptographic hash function turns
out to be vulnerable to quantum attacks — which has never happened so far
— an alternative quantum-resistant hash function can be used to make XMSS
quantum-resistant again. XMSS is also very efficient and there is even a related
standard draft [46]. There are no hash-based public-key encryption schemes.

The fact that a practical and secure post-quantum signature scheme exists is
consequential. In order to prepare computing systems for the quantum computer
era, a quantum-immune trust anchor is needed for potential updates. XMSS can
serve as such a trust anchor. Now is the time to integrate XMSS into standard
protocols such as TLS or S/MIME and to develop concepts to deal with its
statefulness.

A good alternative for hash-based signature schemes are multivariate signa-
ture schemes such as Rainbow [19]. Multivariate schemes offer fast signature
generation and verification and produce significantly shorter signatures than
RSA. However, the key sizes of multivariate signature schemes are still relatively
large. Furthermore, there are no security proofs for the efficient multivariate
signature schemes.

As for post-quantum public-key encryption schemes, currently the code-based
McEliece scheme appears to be the most reliable choice. McEliece and RSA were
proposed roughly at the same time and remain secure since then although there
are no formal security proofs for them. The drawback of the McEliece scheme
are its large keys. It is therefore not applicable in all contexts, for example, when
there are limited computing resources. The usefulness of code-based signature
schemes is unclear as they are still much too inefficient.

From a research and development point of view, lattice-based cryptography
is very promising. There are very interesting proposals for signature and public-
key encryption schemes. In addition, in lattice-based cryptography there are
several special-purpose schemes for example for fully homomorphic encryption,
blind signatures, ring signatures, and group signatures. Such schemes admit the
strongest security proofs: worst-to-average-case reductions. The ring variants
promise high efficiency as their time and space requirements are quasi-linear in
the security parameter. However, lattice-based schemes still require more research
before becoming practical. The hardness of the underlying problems, in particular
of the relevant ideal-lattice problems, requires more research. There is still a gap
between security and efficiency. The efficient versions do not yet take advantage
of the strong reduction proofs. In many cases, reduction proofs would profit from
becoming tighter.
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How far is post-quantum cryptography? There are many promising proposals
some of which are rather close to becoming practical. In view of the importance of
public-key cryptography explained in Section 3, a joint effort is necessary to make
the promising proposals ready for practice. Such an effort provides quantitative
predictions of the hardness of the relevant problems and tight security proofs
leading to trustworthy parameters. It also provides optimized implementations
and standards.

References

1. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM.

2. S. M. E. Y. Alaoui, P. Cayrel, and M. Meziani. Improved identity-based identification
and signature schemes using quasi-dyadic goppa codes. In T. Kim, H. Adeli,
R. J. Robles, and M. O. Balitanas, editors, Information Security and Assurance -
International Conference, ISA 2011, Brno, Czech Republic, August 15-17, 2011.
Proceedings, volume 200 of Communications in Computer and Information Science,
pages 146–155. Springer, 2011.

3. S. Bai and S. Galbraith. An improved compression technique for signatures based
on learning with errors. In J. Benaloh, editor, Topics in Cryptology - CT-RSA
2014, volume 8366 of Lecture Notes in Computer Science, pages 28–47. Springer
International Publishing, 2014.

4. S. Bai and S. Galbraith. Lattice decoding attacks on binary LWE. In W. Susilo and
Y. Mu, editors, Information Security and Privacy, volume 8544 of Lecture Notes in
Computer Science, pages 322–337. Springer International Publishing, 2014.

5. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM J. Comput., 26(5):1510–1523, Oct. 1997.

6. D. Bernstein, J. Buchmann, and E. Dahmen, editors. Post Quantum Cryptography.
Springer, 2008.

7. D. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular information-set
decoding. In Y. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing,
editors, Coding and Cryptology, volume 6639 of Lecture Notes in Computer Science,
pages 81–98. Springer Berlin Heidelberg, 2011.

8. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak reference,
January 2011. http://keccak.noekeon.org/.

9. B. Biswas and N. Sendrier. McEliece cryptosystem implementation: Theory and
practice. In PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages
47–62, 2008.

10. A. Bogdanov, T. Eisenbarth, A. Rupp, and C. Wolf. Time-area optimized public-key
engines: MQ-cryptosystems as replacement for elliptic curves? In E. Oswald and
P. Rohatgi, editors, Cryptographic Hardware and Embedded Systems - CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 45–61. Springer Berlin
Heidelberg, 2008.

11. G. Brassard, P. Hoyer, and A. Tapp. Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002, 1997.

12. J. Buchmann. Introduction to Cryptography. Springer, 2004.



18 J. Buchmann, D. Butin, F. Göpfert, A. Petzoldt

13. J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the Security
of the Winternitz One-Time Signature Scheme. In A. Nitaj and D. Pointcheval,
editors, AFRICACRYPT, volume 6737 of Lecture Notes in Computer Science, pages
363–378. Springer, 2011.

14. J. Buchmann, E. Dahmen, and A. Hülsing. XMSS — A Practical Forward Secure
Signature Scheme Based on Minimal Security Assumptions. In B.-Y. Yang, editor,
PQCrypto, volume 7071 of Lecture Notes in Computer Science, pages 117–129.
Springer, 2011.

15. J. P. Buhler, H. W. Lenstra Jr, and C. Pomerance. Factoring integers with the
number field sieve. In The development of the number field sieve, pages 50–94.
Springer, 1993.

16. A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F. Y.-S.
Lee, and B.-Y. Yang. SSE implementation of multivariate PKCs on modern x86
CPUs. In CHES, volume 5747 of Lecture Notes in Computer Science, pages 33–48.
Springer, 2009.

17. Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In D. Lee
and X. Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of
Lecture Notes in Computer Science, pages 1–20. Springer Berlin Heidelberg, 2011.

18. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

19. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In ACNS, volume 3531 of Lecture Notes in Computer Science, pages
164–175. Springer, 2005.

20. J. Ding, B.-Y. Yang, V. Dubois, C.-M. Cheng, and O. Chen. Breaking the symmetry:
a way to resist the new differential attack. http://eprint.iacr.org/2007/366, 2007.

21. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strengthened version
of RIPEMD. In D. Gollmann, editor, Fast Software Encryption, Third International
Workshop, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages
71–82. Springer, 1996.

22. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In R. Canetti and J. Garay, editors, Advances in Cryptology -
CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science, pages 40–56.
Springer Berlin Heidelberg, 2013.

23. R. Feynman. Simulating physics with computers. International Journal of Theoret-
ical Physics, 21(6-7):467–488, 1982.

24. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

25. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer, 1984.

26. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

27. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

28. L. K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In
G. L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, pages 212–219. ACM, 1996.



Post-Quantum Cryptography 19

29. S. Heyse, I. von Maurich, and T. Güneysu. Smaller keys for code-based cryptography:
QC-MDPC McEliece implementations on embedded devices. In CHES, volume
8086 of Lecture Notes in Computer Science, pages 273–292. Springer, 2013.

30. J. Hoffstein, J. Pipher, and J. Silverman. Ntru: A ring-based public key cryptosystem.
In J. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer Berlin Heidelberg, 1998.

31. A. Hülsing, L. Rausch, and J. Buchmann. Optimal Parameters for XMSSMT . In
A. Cuzzocrea, C. Kittl, D. E. Simos, E. Weippl, and L. Xu, editors, CD-ARES
Workshops, volume 8128 of Lecture Notes in Computer Science, pages 194–208.
Springer, 2013.

32. A. Joux. A new index calculus algorithm with complexity l (1/4+ o (1)) in very
small characteristic. IACR Cryptology ePrint Archive, 2013:95, 2013.

33. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar schemes. In
Proceedings of EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer
Science, pages 206–222. Springer, 1999.

34. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):pp.
203–209, 1987.

35. L. Lamport. Constructing Digital Signatures from a One Way Function. Technical
report, SRI International Computer Science Laboratory, 1979. http://research.
microsoft.com/en-us/um/people/lamport/pubs/dig-sig.pdf.

36. G. Landais and N. Sendrier. Implementing CFS. In INDOCRYPT, volume 7668 of
Lecture Notes in Computer Science, pages 474–488. Springer, 2012.

37. A. Lenstra, J. Lenstra, H.W., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

38. A. K. Lenstra. Key lengths. Technical report, Wiley, 2006.
39. A. K. Lenstra, H. W. L. Jr., M. S. Manasse, and J. M. Pollard. The number field

sieve. In H. Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 564–572.
ACM, 1990.

40. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption.
In A. Kiayias, editor, Topics in Cryptology - CT-RSA 2011, volume 6558 of Lecture
Notes in Computer Science, pages 319–339. Springer Berlin Heidelberg, 2011.

41. M. Liu and P. Nguyen. Solving bdd by enumeration: An update. In E. Dawson,
editor, Topics in Cryptology - CT-RSA 2013, volume 7779 of Lecture Notes in
Computer Science, pages 293–309. Springer Berlin Heidelberg, 2013.

42. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision
resistant. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Automata,
Languages and Programming, volume 4052 of Lecture Notes in Computer Science,
pages 144–155. Springer Berlin Heidelberg, 2006.

43. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer
Berlin Heidelberg, 2010.

44. T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient signa-
ture verification and message-encryption. In EUROCRYPT, volume 330 of Lecture
Notes in Computer Science, pages 419–553. Springer, 1988.

45. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, 1978.

46. D. McGrew and M. Curcio. Hash-Based Signatures. Request for Comments. Internet
Engineering Task Force, 2014. Internet-Draft.



20 J. Buchmann, D. Butin, F. Göpfert, A. Petzoldt

47. C. A. Melchor, P. Cayrel, P. Gaborit, and F. Laguillaumie. A new efficient threshold
ring signature scheme based on coding theory. IEEE Transactions on Information
Theory, 57(7):4833–4842, 2011.

48. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press, 2010.

49. R. C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stanford
University, 1979.

50. R. C. Merkle. A Certified Digital Signature. In G. Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.

51. D. Micciancio. The hardness of the closest vector problem with preprocessing.
Information Theory, IEEE Transactions on, 47(3):1212–1215, Mar 2001.

52. V. Miller. Use of elliptic curves in cryptography. In H. Williams, editor, Advances in
Cryptology Ů CRYPTO Š85 Proceedings, volume 218 of Lecture Notes in Computer
Science, pages 417–426. Springer Berlin Heidelberg, 1986.

53. R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto. MDPC-McEliece:
New McEliece variants from moderate density parity-check codes. In Proceedings
of ISIT, pages 2069–2073. IEEE, 2013.

54. M. A. Morrison and J. Brillhart. A method of factoring and the factorization of F7.
Mathematics of Computation, 29(129):183–205, 1975.

55. J. Patarin. The oil and vinegar signature scheme. Dagstuhl Workshop on Cryptog-
raphy, September 1997.

56. E. Persichetti. Secure and anonymous hybrid encryption from coding theory. In
PQCrypto, volume 7932 of Lecture Notes in Computer Science, pages 174–187.
Springer, 2013.

57. C. Peters. Information–set decoding for linear codes over F_q. In N. Sendrier,
editor, Post-Quantum Cryptography, volume 6061 of Lecture Notes in Computer
Science, pages 81–94. Springer Berlin Heidelberg, 2010.

58. A. Petzoldt, S. Bulygin, and J. Buchmann. CyclicRainbow – a multivariate signature
scheme with a partially cyclic public key. In INDOCRYPT 2010, volume 6498 of
LNCS, pages 33–48. Springer, 2010.

59. A. Petzoldt, S. Bulygin, and J. Buchmann. Linear recurring sequences for the
UOV key generation. In Proceedings of PKC’11, volume 6571 of Lecture Notes in
Computer Science, pages 335–350. Springer, 2011.

60. A. Petzoldt, S. Bulygin, and J. Buchmann. A multivariate threshold ring signature
scheme. AAECC, 2012.

61. A. Petzoldt and J. Ding. Gui – a fast HFEv- based multivariate signature scheme.
to Appear.

62. C. Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and
I. Ingemarsson, editors, Advances in Cryptology: Proceedings of EUROCRYPT 84,
A Workshop on the Theory and Application of of Cryptographic Techniques, Paris,
France, April 9-11, 1984, Proceedings, volume 209 of Lecture Notes in Computer
Science, pages 169–182. Springer, 1984.

63. O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

64. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

65. P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In B. K. Roy and W. Meier, editors, Fast Software



Post-Quantum Cryptography 21

Encryption, 11th International Workshop, FSE 2004, Revised Papers, volume 3017
of Lecture Notes in Computer Science, pages 371–388. Springer, 2004.

66. K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov,
P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt. Room-Temperature
Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28.
Science, 342(6160):830–833, 2013.

67. K. Sakumoto, T. Shirai, and H. Hiwatari. Public-key identification schemes based
on multivariate quadratic polynomials. In CRYPTO, volume 6841 of Lecture Notes
in Computer Science, pages 706–723. Springer, 2011.

68. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

69. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over
ideal lattices. In K. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer Berlin
Heidelberg, 2011.

70. J. Stern. A new identification scheme based on syndrome decoding. In CRYPTO,
volume 773 of Lecture Notes in Computer Science, pages 13–21. Springer, 1993.

71. C. Tao, A. Diene, S. Tang, and J. Ding. Simplematrix scheme for encryption. In
PQCrypto, volume 7932 of Lecture Notes in Computer Science, pages 231–242.
Springer, 2013.

72. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

73. Wikipedia. Timeline of quantum computing — wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_
computing&oldid=613219069, 2014. [Online; accessed 25-September-2014].


